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Annual RPI report for FY 2019. Tasks 7, 8, and 9 

Task 7: Hydrometeor Classification 

7.1 Tornado Debris Signature (TDS) 

In the past year, having validated the experiment automated TDS detection algorithm 
embedded within the Hydrometeor Classification Algorithm (HCA) and examined the nature of 
the false alarms, we have realized that the constraints inherent to the current HCA are too severe 
for acceptable TDS algorithm performance. As a result, we have opted to pursue an object-based 
TDS algorithm. Although this new object-based algorithm uses the TDS classifications produced 
by the experimental HCA, the actual output of the algorithm is an object or data table (similar to 
the TDA). The new algorithm identifies and extracts clusters of TDS classifications in the 
experimental HCA (i.e., “Preliminary Detections”), after which various characteristics (e.g., size, 
maximum aggregation value, and aspect ratio) for each TDS “cluster” are calculated. Those 
“clusters” that are highly non-circular, have comparatively low maximum aggregation value, and 
are relatively small are removed; the specific thresholds used at this time are based upon an 
analysis of a verification datasets resulting from a manual examination of TDS cases. The 
detections that meet these criteria are then deemed to be valid detections (e.g., “Final 
Detections”). One of the primary benefits of an object-based algorithm is that the TDS detections 
can be overlaid atop existing radar products that a meteorologist responsible for severe weather 
and tornado warnings would already be examining. This type of presentation allows someone 
familiar with radar data and severe storm conceptual models to quickly assess the viability of 
detection. 

Additional cases in less climatologically favored regions for tornadoes (e.g., New York) were 
added to the validation dataset in FY19. Whereas the TDS-enabled HCA produced a false alarm 
rate of 82.5%, the additional, object-based thresholding reduces the FAR to ~19.6%; the number 
of false alarms drop from 1517 to 57, whereas the number of correct detections (i.e., “hits”) 
drops 322 to 235.  Attribution analysis for the false detections indicates that false detections in 
the TDS-enabled HCA are most commonly caused by ground clutter, gust fronts, and data 
quality-related issues in the Doppler velocity data (e.g., dealiasing errors, high-variance velocity 
estimates, etc.). When the thresholds are applied at the object level, the most common sources 
for false detections are hail contamination, high-variance velocity estimates, and gust fronts.  The 
vast reduction in false detections indicates that the object-based algorithm is better able to 
automatically detect TDS events with many fewer false detections compared to the TDS-enabled 
HCA (Fig. 7.1.1). 

A presentation summarizing development and assessment of the performance of an object-
based tornado debris signature detection algorithm was made by J. Snyder at the 39th 
International Radar Conference in Japan (Snyder et al. 2019). 
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Fig. 7.1.1  Maps of the (left) preliminary detections from the TDS-enabled HCA and the (right) 
final detections from the object-based algorithm for the data used to validate the algorithm. In 
both panels, the black “+” signs indicate false detections and the red “+” signs indicate correct 
detections.  
 
Task 7.2 Classification of winter precipitation 
 

The spectral bin classifier (SBC) and the melting layer detection algorithm (MLDA) are the 
two primary modules of the modified winter surface classification algorithm (WsHCA). Our 
work on further modification and refinement of SBC and MLDA is described herein. 

7.2.1 One-dimensional melting snow model and spectral bin classifier 

Until recently, the classifier used as an input the vertical profiles of temperature and humidity 
from the HRRR model updated every hour and some generic size distribution of ice particles 
above the melting layer. The SBC classifier uses a Lagrangian one-dimensional melting snow 
model (1D-MS) developed at NSSL several years ago (Ryzhkov et al. 2014; Troemel et al. 2014; 
Reeves et al. 2016). The 1D-MS is a Python-based Lagrangian spectral bin model coupled to a 
polarimetric radar operator (Ryzhkov et al. 2011). Flux conservation is assumed, with one snow 
particle above the melting layer equaling one rain drop below the melting layer (i.e., aggregation 
and breakup are excluded). The environment can be specified using an idealized environment or 
from observed sounding data. Treatment of various degrees of riming is included, from unrimed 
snow aggregates to heavily-rimed particles. A number of updates have been made since the 
original model formulation. An explicit treatment of the mass transfer due to of evaporation and 
sublimation is now included. In addition, environmental feedbacks due to microphysical 
processes have been added for both temperature and moisture, allowing the environment to 
evolve in response to the precipitation. Previous versions specified a rain size distribution at the 
surface and extrapolated this to a snow distribution above the melting level. The current version 
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allows for the direct specification of a snow size distribution above the melting level, which can 
be estimated from radar data (e.g., Ryzhkov and Zrnić 2019) and does not require evaporative 
losses to be neglected as is done when specifying particle size distributions at the surface and 
extrapolating upward. Radar scattering calculations are performed using the PyTMatrix package 
(Leinonen 2014), with support for Ku, Ka, X, C, and S bands included. Numerous approaches 
for calculating the effective relative permittivity of particles is included (including all topology 
combinations of the Maxwell-Garnett and Polder-van Santen methods), and with a new 
formulation for melting snow that attempts to incorporate the initial internal soaking of 
meltwater.  

Work is ongoing to continue to extend the 1D-MS. The model is being re-written in an 
object-oriented approach to make the code more readable and user-friendly, and formal online 
documentation is being prepared to guide users on how to use the model for easier sharing with 
research partners. In addition, a simple parameterization for accretion following Trӧmel et al. 
(2014) is being implemented. Finally, efforts are underway to make the model more 
comprehensive by adding the treatment of pristine ice crystals with adaptive habit depositional 
growth following Chen and Lamb (1994) and Jensen and Harrington (2015) to allow for the 
investigation of, for example, local generation of needles in a refreezing layer. 
 
7.2.2 Summary of recent changes to SBC 
 

(a) Changes to software engineering 
 

In the third quarter of 2018-2019, Jacob Carlin and John Krause undertook the rewriting and 
streamlining of the SBC code. The SBC code has been through several different platforms and 
has been used by a number of different scientists since its introduction in 2014. As such, it was 
difficult to know which parameters and variables had been added or removed over time. To 
facilitate this, Jacob created a flow chart of the now named SBCv2 and list of all of the 
modifications to this C++ code base that we made as we progressed. As with any rewrite, several 
formulae were evaluated and changed as well as some modifications to the logic to speed up the 
computations and to reduce the memory footprint, which had grown over time. In the end, John 
was able to create a piece of code that can compare SBCv1, SBCv2, and the current SBCv3 code 
bases from a single input. The SBCv3 code improves over the SBCv2 with an 8x faster 
execution time and 10x lower memory requirement for a CONUS US HRRR output. This is a 
significant improvement.  We also have a flowchart of the logic and list of modifications applied 
from v2->v3. Finally, Jacob has been able to work with this code natively and run it on several 
cases.  

 
(b) Changes to classification scheme 

 
Most of the classification scheme has remained the same. However, we implemented a new 

wetbulb-based “pre-classification” scheme for obvious snow (SN), rain (RA), and freezing rain 
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(FZRA) classifications that skips the model microphysical processes and significantly speeds up 
the code. We also added a logic split for cases of liquid nucleation at cloud top and subsequent 
nucleation/freezing beneath it.  

 
(c) Changes to model physics/parameters 

 
We have begun expanding the number of microphysical processes that are included in the 

SBC. Primarily, we implemented an explicit calculation of evaporation. This allows for the 
variable effects of evaporation on different particle size bins, and eliminates the need to assume a 
saturated wetbulb temperature profile as done previously. Preliminary results suggest modest 
impacts for the default particle size distribution (PSD) and number of size bins, but more 
substantial impacts for PSDs featuring a large number of small particles (Fig. 7.2.1). In the latter 
case, changes include both transitions toward more ice due to evaporation of liquid water (e.g., 
FZRAFZRAPL, FZRAPLPL) and toward more water due to condensation on 
melting/melted particles (e.g., IPFZRAPL, FZRAPLFZRA). Recall that abbreviation PL 
stands for ice pellets and FZRAPL for a mixture of freezing rain and ice pellets. 

In addition, we are investigating the impact of a number of other potential changes, namely 
the number of particle size bins, the assumed PSD, and the vertical resolution around the 0˚C 
wetbulb level. The impact of each of these changes is related to the other conditions (e.g., the 
aforementioned impact of evaporation based on number of bins and PSD). In general, increasing 
the number of size bins and varying the input PSD can significantly affect the resultant 
classifications in transition regions. For the same PSD, increasing the number of size bins results 
in movement toward more mixed regions (e.g., PL, FZRA  FZRAPL, RA  RASN, RAPL, 
etc. where RASN stands for a mixture of rain and snow or wet snow). For the same number of 
size bins, how skewed the PSD is toward small or large particles can strongly affect the ratios of 
ice and water at the surface used to classify the precipitation type. Super-sampling near the 0C 
level appears to be important as well (Fig. 7.2.2): assuming the conditions at the bottom of a 
layer apply over the full depth of the layer will generally result in overly-rapid melting and 
refreezing, whereas linearly interpolating to a higher resolution allows for a more gradual 
melting/refreezing process. 
 
7.2.3 Verification of the SBC performance 

Much of our attention has been on developing a consistent and objective verification 
methodology to discern the impacts of various proposed changes quantitatively. We are using 
data from both mPING and manned ASOS stations to validate the SBC, and consider multiple 
potential “hits” for mixed reports (i.e., reports of either PL or FZRA validate an FZRAPL 
classification). Given the heterogeneous and scattered nature of observations, point-by-point 
validation can obfuscate the impact of modifications. Of particular interest is developing a 
verification methodology that considers different degrees of wrongness, as might be relevant to 
operational forecasters using the SBC (i.e., predicting RA instead of SN is a worse forecast than  
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Fig. 7.2.1 Classification (left) without evaporation and (right) with evaporation for an adjusted 
PSD and 30 size bins for three different times on 12 February 2019. 

 

Fig. 7.2.2 Visual representation of the (left) native HRRR data points, (middle) the current 
translation of HRRR data points to layers, and (right) the result of super-sampling near 0°C. 
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predicting FZRAPL instead of PL). One approach for accomplishing this is a distance-based 
method where the metric we seek to minimize is the distance to the nearest correct observation. 
Vector maps were created with vectors indicating the direction of the nearest correct observation 
scaled by the distance in order to reveal systematic biases in the SBC classification and HRRR 
model data. We have recently begun exploring a “cost function” approach, in which observations 
are spread isotropically in space and weighted by type and linearly in time and space out to some 
maximum distance (Fig. 7.2.3). This allows for the probability of each precipitation type at each 
grid point (where observational data exists) as an estimate of confidence and contribution to the 
cost function. Using HRRR analysis temperature fields as bulk proxies for precipitation type, this 
method can reveal where there is a systematic bias in the HRRR data (e.g., the advance of IP 
northward; Fig. 7.2.3) or local effects that are not captured by the bulk SBC classifications (e.g., 
local generation of snow in the Appalachians; Fig. 7.2.3).  
 

 

Fig. 7.2.3 Normalized maximum probability precipitation type at 2100 UTC on 12 Feb 2019. 
The surface 0C line and 0C line aloft (anywhere in the column) from the HRRR analysis are 
shown as proxies for where rain, snow, and mixed-phase precipitation should occur. 
 

Excellent opportunity to verify the SBC performance comes from our partnership with Korea 
Meteorological Agency (KMA) and Kyungpook National University of Korea through 
participation in the International Collaborative Experiments for Pyeongchang 2018 Olympic and 
Paralimpic winter games (ICE-POP). Alexander Ryzhkov serves on the Advisory Board of ICE-
POP. A unique dataset obtained from the measurements by ground and remote sensing 
instruments (including polarimetric radars) has been obtained during the Winter Olympics in 
Pyeongchang. We shared our SBC classifier with our Korean partners and hosted two graduate 
students from Korea in January 2018. The SBC classifier was utilized for several transitional 
winter events during the Olympics and beyond. The classification results have been presented at 
the 39th International Conference on Radar Meteorology in a joint paper by Bang et al. (2019). It 
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is demonstrated that the SBC exhibits superior performance compared to other four operational 
algorithms used by KMA for classification of winter precipitation. We plan to provide an 
overview of these results at the ROC DQ meeting in December 2019. 

7.2.4 MLDA development 

7.2.4.1 Sidelobe contamination impact on MLDA 

Occasional failures of MLDA can be attributed to ground clutter or sidelobe contamination. 
On the request from the ROC Application Branch (Engineering Change Proposal (ECP) 0089), 
John Krause examined 18 cold season events with compromised results of MLDA. After analysis 
of about 85 hours of data, it was found that the melting layer (ML) was not identified in 2 cases 
for which WsHCA correctly classified precipitation at the surface as snow. Examination of 
remaining 16 events reveals two primary reasons for the contamination of the MLDA output. 
First, antenna sidelobes near the radar that interact with ground clutter can lower the values of 
the cross-correlation coefficient ρhv in the first 10 range gates. Second, excessive Doppler 
filtering of the radar signal along the Doppler velocity zero isodops causes reduction of ρhv 
which can be misinterpreted as the ML signature. If the sidelobe clutter becomes widespread and 
persistent in regions of weak meteorological radar echoes, these reduced values of ρhv can 
overwhelm the statistics to determine the melting layer bottom. The outcome is that the ML 
bottom appears to the too low and close to the radar. Sidelobe contamination signatures often 
look like an arc of low ρhv near the radar. In all examined cases, the best solution was to limit the 
input data to MLDA to locations further away from the radar. A good solution might include the 
use of sounding or NWP model to determine a 2-km-deep layer containing ML or reasonable 
trimming of the closest range gates to suppress sidelobe contamination. John Krause’s analysis 
demonstrates that removing only the first two gates from the computation eliminates almost 80% 
of the errors. 

7.2.4.2 Novel concept of melting layer detection and determination of its parameters 

A novel concept of the melting layer detection and determination of its top and bottom 
heights is introduced by Ryzhkov et al. (2019). It utilizes large statistics of the “intrinsic” vertical 
profiles of polarimetric radar variables through the ML obtained with the use of the QVP 
methodology. The statistical correlations between intrinsic vertical profiles of Z and ρhv in the 
melting layer are of particular importance. Another important component of the method is 
simulation of a multitude of the model radial profiles of Z and ρhv at all antenna tilts for different 
heights and strengths of the ML and storing them in lookup tables. These radial profiles are 
generated taking into account the antenna pattern and the impact of beam broadening at longer 
distances from the radar. Two important parameters of the radial profiles of ρhv are the range 
where ρhv starts decreasing due to beam interception of the bottom of the ML and the “strength” 
of the ρhv minima associated with the ML. The “intrinsic” top and bottom of the ML are 
determined by finding the best match between the model and observed radial profiles of ρhv. The 
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matching routine is illustrated in Fig. 7.2.4 where the model and measured radial profiles of ρhv 
at elevation 1.45° are compared. 

The distances rb where both model and measured ρhv as well as the “strength” of the ML 
defined as  
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S r dr= r −r∫     (7.1) 

are matched are used to pick up an appropriate model vertical profile of the ML with its “true” 
heights of the top and bottom. In the example in Fig. 7.2.4, the ρhv threshold ( )th

hvr is equal to 
0.985.  

 
Fig. 7.2.4 Simulated and measured radial profiles of ρhv used for a matching routine for 
determination of the parameters of the ML. 
 
An example of PPI of Z and ρhv at El = 1.45° for the winter storm observed by the KICT WSR-
88D radar is shown in Fig. 7.2.5. The range to the ML bottom rb  and the corresponding ML 
bottom height as functions of azimuth are displayed in Fig. 7.2.6. Note that azimuthal 
dependency of the  
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Fig. 7.2.5 PPIs of Z and ρhv at El = 1.45° for the storm observed by the KICT WSR-88D radar on 
2011/12/19. 

 
Fig. 7.2.6  Azimuthal dependencies of the distance to the ML bottom and ML bottom height for 
the case illustrated in Fig. 7.2.4. 
 
ML bottom height is well captured by the algorithm and the estimate of this height is not affected 
by antenna beam broadening. Repeating the procedure at multiple elevation angles would 
produce the estimates of the ML bottom and top at different distances from the radar. Therefore, 
both azimuthal and radial dependencies of the parameters of the ML can be quantified using the 
suggested technique. In 2019, the major principle of a new MLDA method was outlined and 
tested for only two cases of stratiform rain with low bright band. Further testing and 
development of the algorithm will follow in FY2020. 

The proposed methodology hinges on the accurate characterization of the intrinsic vertical 
profiles of Z and ρhv within the melting layer and their statistical correlations. This was done in 
the two comprehensive statistical studies of the ML QVPs – one at CIMMS/NSSL (Griffin et al. 
2019) and another in Germany (Troemel et al. 2019) in close partnership with CIMMS/NSSL. 
Composite histograms of different radar parameters within the melting layer measured at S band 
are presented in Fig. 7.2.7. Correlations between minimal value of ρhv and maximal value of ZDR 
within the ML with its depth and strength in terms of Z enhancement are illustrated in Fig. 7.2.8.  
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Fig. 7.2.7 Composite histograms of a) maximum ZH in the ML (dBZ), b) maximum ZDR in the 
ML (dB), c) maximum KDP in the ML (° km-1), d) minimum ρhv in the ML, e) ΔZH (i.e., ZH in 
ML - ZH in rain; dBZ), and f) δ (°) in the ML, for the 33 QVP ML events. Mean, 90th percentile 
maximum (indicated as max), and 10th percentile minimum (indicated as min) values of the 
variables are indicated in each panel, for the total dataset (represented by the bold black lines), 
the data corresponding to ZH < 20 dBZ (represented by the orange lines), and the data 
corresponding to ZH ≥ 20 dBZ (represented by the blue lines). From Griffin et al. (2019). 

The correlation dependencies involving min(ρhv) are used for designing our new technique 
for determination of the parameters of the ML and polarimetric vertical profile of reflectivity 
(PVPR) technique which is briefly described under the task 8.2 of this report. 
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Fig. 7.2.8. Composite density scatterplots of a) minimum ρhv in the ML vs. ΔZH (dBZ), b) 
maximum ZDR in the ML (dB) vs. ΔZH, c) minimum ρhv in the ML vs. ML depth (km), and d) 
maximum ZDR in the ML vs. ML depth, for the 33 QVP ML events.  Note: ΔZH = (maximum ZH 

in the ML) – (ZH in rain).  Correlation between the variables (i.e., r) is indicated for the data fit in 
each plot. From Griffin et al. (2019). 

Task 7.3 Identifying Areas and Sources of Reduced Radar Data Quality 

Poor data quality and “artifacts” in the data (to include returns for which the signal is not a 
valid representation of the meteorological scatterers in the radar volume) can reduce the 
performance of various algorithms (e.g., HCA and QPE) and complicate users’ subjective 
analysis of the radar data.  In FY19, we developed preliminary algorithms to identify the three-
body scatter signature/spike (TBSS, a.k.a., “hail spike”) and non-uniform beam filling (NBF) 
and a simple yet effective way to identify ground clutter that remains after the use of existing 
clutter suppression scheme(s).   
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The TBSS algorithm was implemented following Mahale et al. (2014). It adapts the fuzzy 
logic-based HCA to locate and identify locations of multipath scattering that can occur as the 
radar beam is redirected to the ground upon being scattered by hailstones aloft. To do this, the 
algorithm first locates HCA classifications of large or giant hail and then applies a specific fuzzy 
logic scheme down radial of the hail to determine if it is contaminated by TBSS. Observed TBSS 
contamination can often extend down radial from the initial point, and the algorithm allows 
TBSS detections to continue if the gates fall within the fuzzy logic parameters.  The TBSS 
algorithm, since it uses the existing HCA as a “first guess” to locate hail, cannot be run within 
the existing HCA without modification.  An example of the TBSS-enabled HCA is shown in Fig. 
7.3.1. 

 
 
Fig. 7.3.1. An example of (left) ρhv and (right) TBSS-enabled HCA. The white arrows in the 
right panel point to prominent TBSSs. 
 

The TBSS detection performs well except in areas of NBF and ground clutter. NBF lowers 
ρhv values downstream of origination, which can create long false streaks of TBSS. Ways to 
mitigate such false detections are being examined. For example, a simple way to mitigate NBF-
related TBSS false detections would be to limit the TBSS detection to a maximum number of 
gates. The false positive error would still be present, but it would be contained. Another option 
would be to limit the TBSS detections in regions of NBF. This option would probably create 
several locations where missed detections of TBSS would exist. NBF can be caused by the same 
hail cores that produce a TBSS, though severe NBF can increase the difficulty in identifying a 
TBSS.  

NBF detection is based on an examination of vertical and horizontal gradients in ΦDP. The 
method computes the ρhv reduction factor as described in Ryzhkov and Zrnić (2019, pp 189-192). 
However, the maximum reduction is often found near but not co-located with the drop in ρhv 
which is often observed in the data as streaks of lowered ρhv. The ρhv reduction factor is 
computed with both a vertical and horizontal gradient of ΦDP. As the gradient is computed 
through the high point of the value, the gradient will go to zero and then reverse sign, leaving the 
highest gradients near but not at the highest maximum values of ΦDP as computed across (not 
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along) radials. Although the reduction factor is an interesting standalone product, we felt that it 
would be better to utilize it to identify those locations in the ρhv field that could be suspected of 
being contaminated by NBF. Meteorologists often see these areas as streaks of reduced ρhv along 
the radial. To do this we first smoothed the ρhv along the radial with a 7 gate median filter. Then 
we looked for regions that had both low ρhv (< 0.97) and a significant ρhv reduction factor (< 0.96) 
nearby (3 gates). These locations were flagged as contaminated by NBF (the upper right panel in 
Fig. 7.3.2). 

 

Fig. 7.3.2. (Upper left) measured ρhv, (lower left) smoothed ρhv, (upper right) the NBF flag, and 
(lower right) estimated ρhv reduction owing to the ΦDP gradient. Data are from the KLOT radar 
on 1 July 2014.  

Finally, although the existing ground clutter suppression schemes can remove a substantial 
amount of stationary ground clutter, they generally have difficulties removing clutter from wind 
farms, largely owing to the non-zero radial velocity characterizing wind farm clutter. Clutter 
from wind farms can produce errors in the HCA and other algorithms.  For example, both the 
TDS-enabled HCA and the current operational HCA can overclassify hail and TDS when 
convective storms are near wind farms.  To mitigate this issue, the long-term average reflectivity 
(LTAR) product is used. Because meteorological echoes tend to be transient compared to ground 
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clutter sources, their impact on the long-term reflectivity is relatively small. Consequently, an 
average of ~1 month of reflectivity data tends to highlight only persistent clutter like power lines, 
terrain features, and, relevant for this discussion, wind farms. An experimental version of the 
HCA uses the LTAR data to mask HCA output where LTAR exceeds some value (in the case of 
Fig. 7.3.3, the HCA data are masked where LTAR exceeds ~15 dBZ).  

 
 
Fig. 7.3.3. Clockwise from the upper-left, output of the TDS-enabled HCA, the current 
operational HCA, the experimental LTAR-enabled HCA, and LTAR. In the LTAR-enabled HCA, 
locations characterized by LTAR exceeding ~15 dBZ are denoted by the dark gray color. The 
white ovals highlight the three main areas where wind farm clutter produced erroneous HCA 
output that is suppressed in the LTAR-enabled HCA.  Red and yellow colors in the HCA 
products denote hail; the pink and white colors in the TDS-enabled HCA denote TDS. All in all 
panels, purple denotes the “unknown” category. 
 

All codes for the above algorithms are deliverable upon request. A combined product of the 
three different types of reduced radar data quality was not created due to the order in which the 
data are needed. LTAR data are needed first to reduce hail detection errors from locations with 
wind farms. The NBF data are then needed to reduce erroneous hail reports found down radial of 
storm cores. Finally, TBSS can now be more accurately run because the HCA is not producing 
erroneous hail reports over wind farms or regions of NBF. The LTAR code is available as a 
AWS machine with scripts and output as a netcdf file. The code itself is a simple average of 
reflectivity data, but it requires the AWS system to run a month of data. This AWS process can 
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run any radar data in the Big Data Archive for any time frame. We used a month or 30 calendar 
days to generate the LTAR data used in the report. The NBF detection algorithm is a standalone 
C++ program that ingests a 3D volume of differential phase (ΦDP) data to compute the ΦDP 
difference between two different elevation cuts. Finally, the TBSS code is an HCA plugin that 
runs after both the HCA and the Hail Plugin. This implies ingesting radar data and the HCA 
output and modifying the HCA where TBSS signatures are detected. 
 
8.1. Identifying Features in Convective Storms 
 

The existing HCA and Hail Size Discrimination Algorithm (HSDA) rely upon the specific 
values of the radar variables at each location with no knowledge of the surrounding data. In other 
words, the HSDA result at some range gate depends only upon the values of Z, ZDR, and other 
quantities at that location.  In designing the HSDA, Ryzhkov et al. (2013) had to make certain 
assumptions about the characteristics of large (1”-2” diameter) and giant (2”+ diameter) hail.  
For example, it was assumed that giant hail is characterized by very high Z. However, we have 
seen cases in which very prominent size sorting has produced an anomalous size distribution 
characterized by an extremely low number concentration of very large hailstones, the result of 
which is only low or moderate Z (e.g., 30-40 dBZ).   In such cases, the HSDA and HCA fail to 
detect the giant hail. 

To better quantify some of the polarimetric characteristics of large and giant hail, hail reports 
from 13 giant-hail-producing storms were examined, and the location and time of hail reports 
(from the Storm Events Database) were matched to the nearest base-scan (0.5° elevation angle) 
data. A total of 110 giant hail reports and 189 large hail reports were included in this analysis. In 
the left panel of Fig. 8.1.1, the Z- ZDR characteristics of the reported hail are plotted, where the 

 
Fig. 8.1.1. Z- ZDR scatterplots associated with the nearest range gate from 299 large and giant 
hail reports covering 13 cases. The points are the same in each panel, but the left panel shows the 
points colored by the observed hail class with the symbol denoting the HCA class, whereas the 
right panel shows the points colored by the HCA class with the symbol denoting the observed 
hail size class. 
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colors represent the observed size (pink for giant and purple of large), and the shape of the 
marker representing the HCA classification. As can be seen, there is not a readily apparent 
separation between the observed hail size classes (i.e., the pink and purple observed classes have 
significant overlap). The right panel of Fig. 8.1.2 shows the same data but with colors 
representing the HCA class at each report location/time and the shape representing the observed 
hail size class. The HCA, by design, tends to classify the high Z – low ZDR data as giant hail, 
with large and small hail becoming more common as Z decreases and ZDR increases. Note again, 
though, that the characteristics of large and giant hail overlap across much of the Z- ZDR space – 
the clean distinction seen in the HCA results are not apparent in the observations from this 
limited set of cases. 

Conceptually, we expect the largest hailstones to fall near and downstream of the updraft of 
convective storms (where such hailstones tend to grow). If there is significant overlap in the local 
radar characteristics of large and giant hail, then it is plausible to suggest that the hail size 
algorithms (such as the HSDA/HCA) should incorporate storm-scale feature information as well. 
In particular, we suspect that the HSDA can be improved by incorporating information about the 
location and intensity of the updraft. To provide a basis for this, the locations of the hail reports 
previously mentioned were examined relative to the center of the updraft (determined by 
conventionally used signatures such as the bounded weak echo region and ZDR column; Fig. 
8.1.2).  

 
 

Fig. 8.1.2. The cumulative distribution of (left) large and (right) giant hail reports from the center 
of the updraft. The horizontal lines highlight the median (50th percentile) and 90th percentile 
values.  

 
Although the median distance of large and giant hailstones from the updraft center was 

similar (~5.5 km), the occurrence of giant hail dropped off more frequently with distance 
compared to that of large hail. In particular, the 90th percentile for giant hail was ~9.5 km from 
updraft center, whereas it was ~10.5 km for the large hail reports. Regardless, almost all hail 
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reports examined fell within 15 km of the updraft, potentially providing a basis for including 
spatial information into the HCA. 

Note only do we seek to use spatial information to improve the HSDA (by moving beyond 
the 1-dimensional nature of the HCA), but we also are striving to identify hail growth by 
examining polarimetric features aloft. As noted in previous reports, we have reason to think that 
mid-storm signatures such as highly negative ZDR and low ρhv aloft may provide useful 
information on the location of large hail and its growth.  We are currently creating a system with 
which we can examine products that may be valuable for identifying hail aloft (e.g., minimum 
ZDR and ρhv at -20° C), though we have experienced non-trivial issues trying to create a cell-
tracking method to extract the radar data that we want to study.  

A good candidate for such cell-tracking method is the Multi-Cell Identification and Tracking 
(MCIT) algorithm that has been recently developed at CIMMS / NSSL (Hu et al. 2019). MCIT 
uses the “watershed” principle formulated in the original paper by Rosenfeld (1987). The 
advantage of the watershed methodology is that it is capable to identify and track cells for both 
isolated and clustered cloud systems. As opposed to many other tracking techniques, this 
methodology takes into account possible splitting and merging of individual cells.  

Identification of a cell is performed based on the radar reflectivity Z data that are converted 
from the polar to Cartesian grid with horizontal resolution of 0.5 km and vertical resolution of 
0.3 km. The parameter called Vertically Integrated Liquid (VIL) is computed in every 0.5 x 0.5 
km pixel from the vertical profile of Z as  

Ht

Hb

VIL M(h)dh= ∫      (8.1) 

where mass water content M is estimated from radar reflectivity factor Z as 

3 4/7M 3.44 10 Z−=   ,  (8.2) 

Hb and Ht are the heights of the bottom and the top of the cloud (Greene and Clark 1972). In (8.1) 
– (8.2), Z is expressed in mm6m-3, and M is in g/m3. VIL is usually measured in kg/m2 and varies 
between 0 and 70 kg/m2. For VIL exceeding 50 kg/m2 the storm potentially contains hail.   

A cell peak is defined as a local maximum of VIL (or LVIL = 10 log(VIL)) within a radar 
echo that is at least 5 grid boxes in size in order to avoid noise and over-identification of cells. 
Two neighboring cells may appear to overlap but are still considered distinct as long as their 
maxima in terms of LVIL are separated by a valley that is at least 2 dB lower than the weaker of 
the two maxima. For each peak of VIL, the watershed routine determines a “watershed” area 
surrounding the peak with the boundary defined by a minimal VIL (see Fig. 4). The MCIT 
algorithm is written in MATLAB which offers a “watershed” function. The command used is 
simply “watershed (input, options)”. These watershed areas surrounding VIL peaks are called 
“cells” and tagged with numbers. 
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Cell tracking is performed by a comparison of the VIL maps with identified cells at the two 
successive radar scans, e.g., scan n and scan n+1. Such comparison is done by shifting VIL map 
at scan n+1 back to the scan n using a shifting vector ΔR. At the beginning of a tracking process, 
ΔR = U Δt where U is the wind vector at the steering level in the atmosphere (700 – 850 mb) and 
Δt is the time between successive scans. It is assumed that convective cells move in the direction 
which is close to the one of vector U. This is why knowing wind at the steering level from the 
model or sounding is highly recommended (although not necessary). Actual moving vector of the 
cells is generally different from U and the deviation from U should be estimated by displacement 
of the VIL peaks belonging to the same cell as described by Rosenfeld (1987) and Hu et al. 
(2019). 

If simple advection takes place and the cell does not evolve during time shift Δt then the VIL 
map of this cell (or its watershed) at n+1 scan completely coincides with its VIL map at n scan 
after its backward shift. However, rarely happens in the nature. Usually the VIL maps of the cell 
are only partially overlapped and the i-th cell at n+1 scan can better overlap with the j-th cell at n 
scan. In order to make sure that we follow the temporal evolution of the same cell, the following 
logic is implemented in MCIT (Hu et al. 2019): 

(1) Integral VIL is computed for each i-th cell at n scan: IntVIL(i,n) 
(2) Integral VIL is computed for the overlapping area of the compared cells at scans n and 

n+1: IntVIL(i,j,n,n+1) if the cell (i,n) and the cell (j,n+1) are overlapped.  
(3) Cell j is considered a continuation of cell i if  

(a) IntVIL(i,j,n,n+1) is more than 50% of the smaller of IntVIL(i,n) and IntVIL(j,n+1) 
(b) The VIL peaks of both old and new cells are inside the common area of the two 

compared cells 
(c) If the condition (c) is not fulfilled then it is required that IntVIL(i,j,n,n+1) must be 

more than 75% of the smaller of IntVIL(i,n) and IntVIL(j,n+1). 

More details of MCIT can be found in Rosenfeld (1987) and Hu et al. (2019). 
 
Task 8.2. Nowcasting cold season precipitation (rain and snow) using polarimetric 
signatures aloft 

The major idea of nowcasting is to quantify snow / ice precipitation at its main source 
(primarily in the dendritic growth layer), calculate falling snow trajectory using the wind data, 
and estimate transformation of microphysical characteristics of snow along the fall trajectory 
using spectral bin cloud model that is initiated by the size distribution of snowflakes aloft and 
utilizes vertical profiles of temperature and humidity retrieved from the sounding or HRRR 
regional model. With DGL at the heights of 2 – 3 km above the freezing level or the ground and 
terminal fall velocity of snowflakes of about 1 m/s this would result in snow nowcasting with 
lead time of 30 – 60 min. 

We illustrate this concept using an example of heavy snowfall event that occurred in the 
Washington, DC area on 23 January 2016. The event was closely monitored by the KLWX 
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WSR-88D radar located in Sterling, VA. During the storm, several snow bands passed over the 
DC area. The successive columnar vertical profiles (CVP, Murphy et al. 2019) of Z, ZDR, ρhv, 
and KDP were generated in the strongest snow band for a period of 2 hours as it passed from SE 
to NW in the proximity of the WSR-88D radar (Figs. 8.2.1 and 8.2.2). The CVPs clearly indicate 
that the bulk of snow manifested by very high KDP (starting at 0630 UTC) is generated within the 
layer centered at the height of 4 km. Then falling snow starts aggregating which causes rapid 
increase of Z until it reaches stable and dry surface layer stretching from the ground up to 2 – 3 
km (Fig. 8.2.3). Snow sublimation in the dry layer causes noticeable decrease in the snow 
intensity once it reaches the surface at about 0800 UTC (Fig. 8.2.2).  

 

 
 

Fig. 8.2.1. Cartoon showing locations of the major snow band during heavy snowfall event in the 
Washington, DC area on 23 January 2016 at 0630 UTC and 0830 UTC. 
 

Polarimetric radar-based size distribution retrieval at the 4 km level at 0630 UTC yields IWC 
of about 1.5 g/m3 and mean volume diameter Dm of snowflakes of about 3.2 mm. With such 
initial size distribution of snow aloft, our 1D cloud model yields about 40% reduction in snow 
rate within dry layer with average sub-saturation with respect to ice of 5% (Fig. 8.2.3). This is 
well illustrated in Fig. 8.2.4 (left two panels) showing evolution of the vertical profiles of snow 
rate obtained from the S(KDP,Z) and S(Z) relations (S = 0.088Z1/2 , accepted for the US East 
Coast). 
        The polarimetric relation derived by Bukovcic et al. (2018) 
 

0.61 0.332.2 DPS K Z=    (8.3) 
 

yields a decrease of S from 11 – 12 mm h-1 aloft down to 7 - 8 mm h-1 near the surface. The 
comparison of snow rates retrieved from the radar at 0.8 km height above the Automated Surface 
Observation Station (ASOS) in close proximity to the radar shows that the polarimetric relation 
gives better estimate of maximal snow rate measured by ASOS but tends to underestimate lower  
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Fig. 8.2.2. Columnar vertical profiles (CVP) of radar reflectivity Z, differential reflectivity ZDR, 
cross-correlation coefficient ρhv, and specific differential phase KDP measured by the KLWX 
WSR-88D radar in a height versus time format as the snow band moved NW from 0630 UTC till 
0830 UTC for the storm on 23 January 2016. The CVP column moves with the center of the 
snow band. 
 

 
Fig. 8.2.3. Vertical profiles of temperature (T) and dewpoint temperature (Td) (left panel), vapor 
saturation with respect to water and ice (RHw and RHi) (middle panel), and vertical gradient of 
potential equivalent temperature dθe/dz (right panel) retrieved from the sounding near the Dulles 
International Airport at 0600 UTC on 23 January 2016. 
 
snow rates (right panel in Fig. 8.2.4). The S(Z) relation underestimates maximal snow rate by a 
factor of 2. 

This example demonstrates potential capability of the method to predict snow occurrence and 
intensity at the surface more than 100 km away from its source aloft with lead time of 1.5 hours 
(in this particular example) although polarimetric relation for snow measurements may need  



21 
 

 
Fig. 8.2.4. Columnar vertical profiles (CVP) of snow rate retrieved from the S(KDP,Z) and S(Z) 
relations (left and middle panels) columns and temporal dependencies of snow rate from the 
nearest ASOS (blue curve), S(KDP,Z) (red curve), and S(Z) (green curve) (right panel). 
 
further adjustment. Note that the described methodology may not be directly applicable for lake-
effect snow events with low cloud tops well below the dendritic growth layer. 

This concept of nowcasting of precipitation at the surface from the polarimatric 
measurements in the dendritic growth layer was tested on a large dataset in partnership with the 
University of Bonn, Germany (Troemel et al. 2019). Time series of quasi-vertical profiles (QVPs) 
from 52 stratiform precipitation events observed with the polarimetric X-band radar in 
Bonn/Germany (BoXPol) between 2013 and 2016 have been statistically analyzed to infer 
microphysical processes shaping the dendritic-growth-layer (DGL) and melting-layer (ML) 
signatures including surface rainfall. Specific differential phase KDP in the ML shows an average 
correlation of 0.65 with surface rainfall for these cases. Radar reflectivity decreases below the 
ML by about 2 dB on average while differential reflectivity ZDR is hardly affected, which 
suggests rain evaporation as the dominating effect. Estimated ice water content or snow water 
equivalent precipitation rate S in the DGL is correlated with surface rain rates with lead times of 
30 min and longer, which opens a pathway for radar-based nowcasting of stratiform precipitation 
tendencies. Trajectories of snow generated aloft down to the surface were constructed from wind 
profiles derived both from the nearest radiosounding and radar-based velocity azimuth displays 
(VAD) to narrow down the location where the DGL-generated snow reaches the surface as rain. 
The lagged correlation analysis between KDP in the DGL and reflectivity ZH at that location 
demonstrates the superiority of the VAD information. Correlation coefficients up to 0.80 with 
lead times up to 120 min provide a proof of concept for future nowcasting applications that are 
based on DGL monitoring. Strong correlation between KDP of ice in the DGL aloft and Z in rain 
at the surface 50 min later is illustrated in Fig. 8.2.5 (top and middle panels) for a stratiform 
event observed on 7 October 2014 by BoXPol. The bottom panel in Fig. 8.2.5 demonstrates very 
good qualitative and quantitative agreement between polarimetric estimates of snow rate in the 
DGL, rain rates estimated from Z at the surface, and the corresponding surface gauge 
measurements with a 50 min time shift. 



22 
 

 

Fig. 8.2.5. (top) Scatterplot of KDP in the DGL against Z at predicted surface location 50 min 
later, exploiting VADs, (middle) the corresponding time series of surface Z and KDP in the DGL 
shifted forward in time, and (bottom) the R(Z)-derived and measured rain rates 50 min later at 
the closest rain gauges together with three S(IWC) retrievals using different polarimetric 
estimators, for the low-wind precipitation event observed on 7 October 2014. From Troemel et al. 
(2019). 

8.3. Quasi-Vertical Profiles (QVP) and Column Vertical Profiles (CVP) 
 

Novel techniques for processing and displaying polarimetric radar data such as QVP and 
CVP allow representing vertical profiles of radar variables and their temporal evolution with 
high accuracy and fine vertical resolution. The radar data are displayed in a height vs time format. 
A useful extension of the QVP technique – a range-defined QVP (RD-QVP) was recently 
introduced by Tobin and Kumjian (2017). The RD-QVP product is generated using radar data 
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collected at all available antenna tilts as opposed to a single elevation utilized by QVP (see Fig. 
8.3.1). This improves the accuracy of radar variable estimates and fills the “surface gap” caused 
by 

 
Fig. 8.3.1.  Cartoon explaining the RD-QVP concept. From Tobin and Kumjian (2017). 
 
the lack of radar data within first 8 range gates for the WSR-88D radars. Important near-surface 
features such as refreezing signature which are often missed in QVPs are now detectable in the 
RD-QVP product. 

RD-QVPs and CVPs can be generated almost in real time (with about 5 min latency) for any 
WSR-88D radar using the Amazon Web Services (AWS) cloud computing platform. Each radar 
has its own rented computer that processes the data from NOAA’s Big Data project. The 
Amazon Web Service S3 is used to store and display the QVP and CVP products. These data can 
be viewed remotely by our customers in the Radar Operations Center (ROC) and in the NWS 
headquarters in Washington, DC. Live RD-QVP demonstration was presented during the ROC 
Data Quality meeting in February 2019. At the moment, the product is in great demand by 
people at the Lincoln Lab and NWS. We can qualify such effort as a real breakthrough in our 
ability to examine and visualize WSR-88D data in real time and in the format that has not been 
utilized before. 

Herein, we present several examples of the RD-QVP and CVP products which can be 
utilized by researchers and operational meteorologists. A typical composite RD-QVP is shown in 
Fig. 8.3.2. It represents the evolution of the vertical profiles of Z, ZDR, KDP, and ρhv retrieved 
from the data collected by the KGYX WSR-88D radar in Portland, Maine, during the Noreaster 
winter storm on 02/13/2019. This RD-QVP product reveals important microphysical features 
elucidating the process of precipitation formation aloft and its type at the surface. Three notable 
layers are visible in the ZDR image: dendritic growth layer within a temperature interval between 
-10 and -20°C centered at the height of about 5 km, melting layer at 2.5 km, and refreezing layer 
from the altitude of approximately 1 km down to the surface. It is obvious that the melting layer 
associated with a temperature inversion emerges aloft starting from 06Z. It is accompanied by 
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the appearance of the refreezing signature beneath which tells that freezing rain in the height 
interval between 1 and 2 km is converting to ice at the height of 1 km. The corresponding 
precipitation type at the 

 
 
Fig. 8.3.2. RD-QVP of Z, ZDR,KDP, and ρhv generated from the KGYX WSR-88D data during 
snowstorm on 02/13/2019 in the Portland, Maine area. 
 
surface during this period is ice pellets or ice needles which were confirmed by surface 
observations. It is important that the elevated layer of freezing rain between 1 and 2 km poses 
significant icing hazard for aviation. 

The sounding in the proximity of the KGYX WSR-88D radar displayed in Fig. 8.3.3 shows 
the presence of elevated melting layer at the time when it was detected by the radar. It also 
indicates that the surface atmospheric layer is sufficiently cold to activate ice nuclei in 
supercooled raindrops (-5 - -6°C) and to spawn the refreezing process (Reeves et al. 2016).  

Another Noreaster example is illustrated in Figs. 8.3.4 and 8.3.5. The storm on 02/02/2015 
was also observed with the nadir-pointing W-band airborne radar deployed onboard the NCAR 
Gulfstream V HIAPER aircraft. While flying over the Boston area, the W-band radar detects the 
melting layer at the height of about 1.5 km (Fig. 8.3.4). Notable is fine radar echo structure at the 
top of the storm exhibiting multiple snow generating cells which are resolved with the airborne 
radar. The corresponding RD-QVP product generated from the data collected by the KOKX 
WSR-88D radar complements the airborne radar data (Fig. 8.3.5). It also shows very clean 
signature of the melting layer with gradually increasing height from 1.5 to 2 km. Although the 
snow generating cells are not resolved in the RD-QVP product due to its poor horizontal 
resolution (100 km as shown in Fig. 8.3.1), the combined use of radar information retrieved from 
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nadir-pointing short-wavelength radar and ground-based WSR-88D radar has strong potential to 
better understand the physics of snow formation in winter storms. 

 

 
Fig. 8.3.3  Sounding in the proximity of the KGYX WSR-88D radar on 02/13/2019 at 12 Z. 

 

 
Fig. 8.3.4. Radar reflectivity (top panel) and vertical Doppler velocity (bottom panel) measured 
by the nadir-pointing W-band radar onboard the NCAR Gulfstream V HIAPER aircraft over 
Noreaster on February 2, 2015. From Janiszeski et al. (2019). 

 
Finally, we utilized the CVP methodology to investigate the microphysical structure of land-

falling hurricanes Harvey and Florence. The results of this study are summarized in the paper by 
Hu et al. (2019). Some excerpts from the paper are illustrated in Figs. 8.3.6 – 8.3.7.  

The eyewalls of hurricanes and their outer rain bands have very different microphysical 
characteristics and different potentials for flash flooding. The hurricane Harvey exemplifies such  
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Fig. 8.3.5. Composite RD-QVP generated from the KOKX WSR-88D radar data collected on 
February 2, 2015 during the Noreaster event. 
 
difference very well. The composite CVPs of polarimetric radar variables have been generated in 
the eyewall area of the hurricane and its outer rain bands. The centers of the vertical CVP 
columns are shown in the PPIs of radar reflectivity shown in Fig. 8.3.6. The eyewall region was 
better sampled by the KCPR WSR-88D radar in Corpus Christi (left panel in Fig.8.3.6) whereas 
the outer rain band was better visible from the perspective of the KHGX WSR-88D radar in 
Houston (right panel in Fig. 8.3.6). The corresponding CVPs are shown in Figs. 8.3.7 and 
8.3.8 .In addition to the CVPs of radar variables, the CVPs of the mean ice particle diameter Dm 
and particle number concentration Nt were generated from the polarimetric radar data above the 
melting layer using the algorithms described by Ryzhkov et al. (2018) and Ryzhkov and Zrnic 
(2019).  

Comparison of the two CVPs in the eyewall and outer rain band indicates that the eyewall 
region is characterized by high concentration of very small ice aloft with radar reflectivity 
generally below 20 dBZ above the melting layer. It is a warm rain mechanism that is primarily 
responsible for precipitation in the eyewall. In other words, a bulk of rain is formed below the 
melting layer via coalescence of raindrops and ice aloft does not play significant role in 
precipitation formation. The outer rain band is characterized by noticeably higher radar 
reflectivity in ice above the melting layer, larger size of ice particles, and lower number 
concentration. This means that good portion of precipitation at the surface is formed via melting 
of ice. Coexistence of graupel-size ice, ice crystals, and supercooled water lofted in stronger 
updrafts facilitates electric charge separation and significant lightning discharges in the outer rain 
band. No lightning was reported in the eyewall region of the hurricane Harvey. 
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Fig. 8.3.6. Radar 0.5-degree reflectivity plan position indicator (PPI) maps. (a) Harvey’s inner 
eyewall and (b) Harvey’s outer rain band. Radar CVP sectors are labelled by the white boxes in 
all radar PPI panels. 

 
Fig. 8.3.7. CVP of Z (a), ZDR (b), KDP (c), ρhv (d), Dm (e) and Nt (f) of hurricane Harvey eyewall region 
from 20170825 15:00 UTC to 22:11 UTC. The CVP is centered at 60 km and 120° from the KCRP WSR-
88D radar and the CVP base is 20 km in range and 20° in azimuth. The black contours denote reflectivity 
magnitudes every 10 dBZ. The dot lines in each panel show the corresponding 0° C, -15° C and -40° C 
isotherms from HRRR.  

The combination of warm rain generated below the melting layer and rain resulting from the 
melting of ice originated in stronger convective updrafts makes an outer rain band of the  



28 
 

tropical cyclones a more efficient rain producer compared to an eyewall. Extremely heavy rain 
from the stalled external rain bands has caused most of the flooding during Harvey.  

 
Fig. 8.3.8.  Same as in Fig. 8.3.7, but for hurricane Harvey’s external rain bands from 20170826 
14:00 UTC to 20:00 UTC. The CVP is centered at 40 km and 150o from the KHGX radar. The 
red numbers at the bottom of each panel indicate the log2(#) GLM flash count within the CVP 
sector in each radar volume scan.  

We reiterate that the advantage of CVP compared to QVP or RD-QVP is that this is not a 
radar-centric product and a vertical column with relatively small horizontal size where the 
vertical profiles of polarimetric radar variables and their temporal evolution are displayed can be 
placed anywhere within a radar coverage area. Moreover, such column may follow a particular 
storm or research aircraft. Many details of the CVP methodology can be found in the paper by 
Murphy et al. (2019).  

Although a CVP column can be located anywhere within a radar field of view, a quality of 
the CVP representation inevitably degrades with the distance from the radar (as of any other 
radar information). Fig. 8.3.9 shows CVPs of Z created at various distances from the radar in a 
widespread stratiform precipitation event on February 7, 2019. This stratiform precipitation was 
sampled by the KCLE WSR-88D radar using VCP 215. Examination of these plots shows that, at 
radial distances beyond 100 km, gaps in the vertical significantly degrade the quality of the CVP. 

Murphy et al. (2019) compared polarimetric radar data collected by the KVNX WSR-88D 
radar with in situ microphysical measurements obtained onboard of instrumented research 
aircraft during the MC3E field campaign in northern Oklahoma on May 20, 2011. Moving CVP 
was used to insure collocation of radar data with in situ aircraft measurements. The temporal 
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evolution of CVP moving with aircraft is illustrated in Fig. 8.3.10. Additionally, microphysical 
characteristics  

 
Fig. 8.3.9. CVPs of Z sampled by the KCLE WSR-88D radar on February 7, 2019. CVPs are 
centered at an azimuth of 225°, and at ranges from 20 km to 160 km from the radar increasing in 
20 km increments. The KCLE radar was operating VCP 215 during this time period. From 
Murphy et al. (2019). 
 
of ice such as ice water content (IWC), mean volume diameter of ice particles (Dm), and their 
total number concentration (Nt) were retrieved from the polarimetric radar measurements using 
the algorithm described in the monograph of Ryzhkov and Zrnic (2019) (Chapter 11). The 
moving CVPs of IWC, Dm, and Nt are presented in Fig. 8.3.11. The retrieved microphysical 
parameters of ice are in good agreement with their direct measurements onboard an aircraft 
(Murphy et al. 2019). 
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We conclude the report on Task 8.3 by providing a summary of the ROC Data Quality Team 
Minutes on 15 February 2019. 

 
Fig. 8.3.10. Moving CVP using data from the KVNX WSR-88D radar on May 20, 2011 from 13 
– 17 UTC. The CVP column moved with the location of the research aircraft flying during the 
MC3E campaign. The black line overlaid on each panel represents the altitude of the aircraft 
with time. Vertical data spacing in the CVP is 50 m, and the column base size is 20 km in range 
and 20° in azimuth. Distance from the radar for each scan is denoted by different shades of grey 
just above the x-axis on each panel. From Murphy et al. (2019). 
 
Practical implications of QVP / CVP include: 

(1) Monitoring of the height and intensity of the melting layer with high accuracy and 
vertical resolution. 

(2) Real-time detection of the temperature inversions aloft which facilitate generation of 
freezing rain during cold season. 

(3) Detection of the areas of strong icing hazard in the interests of aviation. 
(4) Assimilation of the information about temperature and melting layer in the numerical 

weather prediction models. 
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Fig. 8.3.11. Ice microphysical retrievals performed on the May 20, 2011 moving CVP. Panels are 
of (a) mean volume diameter Dm of ice particles in mm, (b) total number concentration Nt in log 
(L-1), and (c) ice water content IWC in g m-3. Distance from the radar for each scan is denoted by 
different shades of grey just above the x-axis on each panel. From Murphy et al. (2019). 
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Task 9.1. QPE in pure rain or rain mixed with hail. 

Massive validation of the R(A) algorithm for rainfall estimation demonstrated its superior 
performance compared to the existing WSR-88D algorithm primarily based on the joint use of Z 
and ZDR. A detailed description of the most recent version of the R(A) algorithm and results of 
its validation are summarized in the papers by Wang et al. (2019), Cocks et al. (2019), and 
Zhang et  al. (2019). There are two lingering issues with the algorithm that have to be addressed. 
One of them is related to the methodology of estimating the factor α from the slope of the ZDR 
dependence on Z and another one is the spatial variability of α within the radar coverage area. 

9.1.1 Novel routine for the estimation of α from the ZDR slope. 

The parameter α used for the conversion of the differential span ΔΦDP to the path-integrated 
attenuation PIA should be optimized on the scan-to-scan basis. At the moment, α is determined 
from the slope of the ZDR(Z) dependence which is essentially nonlinear and the value of the slope 
depends on the reflectivity range in which the ZDR – Z pairs are examined and on the maximal 
value of Z (or Zm) of this range in particular. The impact of nonlinearity can be mitigated if the 
following formulas are utilized for computing α from the slope K = dZDR/dZ 

2
1 2 3a a K a Ka = − +     (9.1) 

where 

2
1 m m0.530 0.0188 0.000194a Z Z= − +  (9.2) 

2
2 m m25.0 0.983 0.0103a Z Z= − +   (9.3) 

  (9.4) 

and Zm is the maximal Z (expressed in dBZ) in the interval (20 dBZ, Zm) where the estimate of K 
is done. In other words, the polynomial coefficients in the α(K) relation depend on the maximal 
Z. 

The performance of the new methodology is illustrated using the case of MCS on 09/16/2016 
observed by the KDMX WSR-88D radar in Iowa (Fig. 9.1.1). The corresponding ZDR – Z 
dependence is shown in Fig. 9.1.2. In that case the ZDR slope K is equal to 0.0556 and Zm = 50 
dBZ. The estimate of α from K using existing formula yields 0.00708 dB/deg which is less than 
the lower threshold 0.015 dB/deg for α. The corresponding fields of rain rate estimated with two 
different values of α: 0.00708 and 0.015 dB/deg are shown in Fig. 9.1.3. The comparison with 
gauges indicates that the use of α = 0.0708 dB/deg results in underestimation of rain rate, 
particularly in the squall line of MCS. Equations (9.1) – (9.4) yield the value of α equal to 0.0185 
dB/deg which is more than two times larger than the previous one and is more consistent with 
the observed rain rate at the surface. We suggest testing this methodology on the MRMS 
platform in  FY2020. 

2
3 m m303 12.5 0.133a Z Z= − +
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9.1.2. Addressing spatial nonuniformity of the factor α in the radar coverage area 

The use of a single factor α for a whole radar coverage area generally leads to some 
underestimation of light rain and occasional overestimation of heavy rain. This is attributed to 
the fact that light rain is commonly characterized by larger α whereas significantly lower α might 
be more typical for heavier rain often associated with deep convection and the use of a single 
“net” α for both rain types produces such biases. 

Two possible approaches are suggested to mitigate this problem. One method involves a 
change in the procedure to estimate path-integrated attenuation PIA from the span of total  

 

Fig. 9.1.1. PPI of Z for the MCS observed by the KDMX WSR-88D radar in Iowa on 09/16/2016. 

 

Fig. 9.1.2. ZDR – Z dependence for the MCS case on 09/16/2016 with the ZDR slope K equal to 
0.0556. 
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Fig. 9.1.3. Maps of rain rates obtained for two different values of α for the case of MCS on 
09/16/2016. 

differential phase ΔΦDP along the radial. According to the existing version of the R(A) algorithm 
described in Wang et al. (2019), 

DPPIA = aDΦ     (9.5) 

where α is determined from the ZDR slope. Two-way path-integrated attenuation PIA is equal to 
the integral of specific attenuation A along the propagation path in rain: 

2 ( )PIA A s ds= ∫    (9.6) 

This equation can be rewritten as 

2 ( ) ( ) 2 ( ) ( )[ ( )]d
DPPIA s K s ds s p s Z s ds= a = a∫ ∫   (9.7) 

where α(s) = A(s)/KDP(s) and assuming that 

( ) ( )[ ( )]d
DPK s p s Z s=    (9.8) 

Integrating both sides of Eq (8.8) over the propagation path in rain gives  

2 ( )[ ( )]d
DP p s Z s dsDΦ = ∫   (9.9) 

Assuming p(s) constant along the ray (p(s) = p), we can arrive at the estimate of the factor p 
(which can vary from ray to ray) 

2 [ ( )]
DP

dp
Z s ds
DΦ

=
∫

   (9.10) 

and Eq (9.7)  can be written as 
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( )[ ( )]
[ ( )]

d

DP d

s Z s ds
PIA

Z s ds
a

= DΦ ∫
∫

  (9.11) 

In other words, the ratio of two integrals in the right side of Eq (9.11) is used instead of a single 
value of α (as in (9.5)). If α is not a function of range s, then Eqs (9.11) and (9.5) become 
equivalent. Note that possible biases of Z due to radar miscalibration or partial beam blockage 
are cancelled out in the ratio in (9.11) and the estimate of PIA is immune to such biases of Z.  

Since parameter α strongly depends on differential reflectivity ZDR as shown in Fig. 9.4 (left 
panel), the range dependence of α is a well defined function of ZDR which can be approximated 
by 

0.0090.008
0.03DRZ

a = +
−

   (9.12) 

if ZDR > 0.2 – 0.3 dB. 
Such methodology does not require estimation of the net α from the ZDR slope and 

automatically takes into account variability of α along the ray and in a whole radar coverage area. 
However, it is prone to the calibration errors of ZDR measurements which are still not 
appropriately addressed on the WSR-88D network. 

Another possible approach implies estimation of the net value of α (α0) from the ZDR slope K 
using new α(K) relations (9.1) – (9.4). Three next steps follow. 

(1) Estimation of specific attenuation A from the basic ZPHI formula as specified in 
Wang et  al. (2019) 

(2) Conversion of A to Z(A) using equation 
( ) 79.8 15.4 log( )Z dBZ A= +   (9.13) 

(3) Estimation of rain rate as 
1.03

0

[ ( )]4120 f Z AR A=
a

   (9.14) 

where  

4 5 2 6 3[ ( )] 0.0125 3.4210 3.4210 1.7310f Z A x x x− − −= + + +   (9.15) 

and 50 ( )x Z A= − . 

The underlying idea is to take into account the dependence of the factor α on radar reflectivity Z 
illustrated in the right panel in Fig. 9.1.4. Since Z can be biased due to radar miscalibration, 
partial beam blockage, or wet radome, it is recommended to use Z retrieved from A as prescribed 
by Eq (9.13) because specific attenuation is not biased by these factors. The function f[Z(A)] 
approximates a median α(Z) dependence indicated by a solid line overlaid on the scatterplot in 
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the right panel of Fig. 9.1.4. The numerator in the ratio in (9.14) describes the dependence of α 
on Z and the denominator takes into account general rain type (e.g., tropical vs continental).  

 

Fig. 9.1.4. Scatterplots of the factor α vs ZDR and Z at S band and temperature 20°C obtained 
from disdrometer measurements in Oklahoma. 

9.2. QPE in snow and mixed precipitation 

9.2.1 Validation of polarimetric algorithms for snow quantification using surface snow 
measurements 

Enormous variability in snow size distributions (SSDs), density, orientation, shape, crystal 
habits, water content, etc., introduces large uncertainty in snow measurements. Historically, a 
multitude of S(Z) power-law relations have been used for snow estimation but the spread of the 
S(Z) estimates is roughly an order of magnitude. The advent of polarization opens new 
possibilities to quantify snow habits and reduce the uncertainty in radar measurements. In the 
study of Bukovcic et al. (2018),  bivariate power law relations for snowfall rate (S) utilizing 
specific differential phase KDP and horizontal reflectivity factor Z have been derived using 2D 
video disdrometer (2DVD) measured snow size distributions (SSDs). These disdrometer-based 
relations have been validated via theoretical simulations/derivations and tested using actual 
polarimetric radar measurements in a number of snowstorms. As a result of studies performed in 
FY2019, a generalized S(KDP, Z) relation is developed and a novel concept of polarimetric snow 
measurements using a combination of KDP and Zdp (reflectivity difference in linear units, Zdp = 
Zh - Zv) is introduced. 

The disdrometer-based relations S(KDP, Z) = γKDP
αZβ (Bukovčić et al. 2018) obtained 

from the Oklahoma snow measurements are validated utilizing theoretical approach with 
exponential and gamma SSDs used in computations. We assume the SSD shape factor μ varying 
from -1 to 3 (which should encompass most frequently occurring snow SSDs), aspect ratio of 
snowflakes 0.65, and the width of the canting angle distribution σ = 0°, to be consistent with the 
previous study. The dependencies of snow density and terminal velocity of the snowflakes on 
their equivolume diameter from Brandes et al. (2007) are taken into account in the computations 



37 
 

of polarimetric variables at S band using the Rayleigh approximation. A theoretical S(KDP,Z) 
relation for a factor μ = 0.135 of a gamma shape SSD gives the relation  

( ) 0.6 0.33, 1.48DP DPS K Z K Z= ,                                                                                                       (9.16) 

which is almost identical to the one obtained from the 2DVD SSD measurements: 

( ) 0.61 0.33, 1.48DP DPS K Z K Z= .                                                                                                      (9.17)                                                                                                         

A multiplier in a theoretical S(KDP,Z) power-law relation varies from 1.93 to 0.88 for μ between 
-1 and 3, with the value of 1.52 for μ = 0 while the exponent is almost invariant.  

  An analytical approach for S(KDP, Z) derivation is presented next. If we start from the 
general definition of snowfall rate S  

( ) ( ) ( )
max

3 3

0

0.6 10
D

s
s

w

D
S D V D N D dD

r
π

r
−= × ∫ ,                                                                         (9.18) 

after the integration and series of derivations we obtain the following expression (using σ = 0° 
and b/a = 0.65 to be consistent with Bukovčić et al. 2018):  

( ) 0.64 0.36, 1.68DP DPS K Z K Z= ,                                                                                                      (9.19) 

which is very close to the relation (9.17) derived from the Oklahoma 2DVD dataset. Both 
exercises confirm the validity of the previous approach.  

A generalized S(KDP, Z) relation obtained from the Oklahoma 2DVD dataset and valid for 
the entire range of σ (0° – 40°) and b/a (0.5 – 0.8) for aggregated snow (and possibly across 
different geographical regions) is 

( )

0.52
0.61 0.330

0.61
2.79 10( , ) ( )DP DP

o s

pS K Z K Z
pF F

 ×
=  

 
λ .                                                                        (9.20)  

The orientation factor Fo = (1/2)exp(-2σ2)[1+exp(-2σ2)] is a function of the width of the canting 
angle distribution σ (in radians). The shape factor Fs = Lb - La is a function of an aspect ratio b/a 
and determined by the shape parameters La and Lb (see Eq. (18) in Bukovčić et al. 2018). In 
(9.20), λ is the radar wavelength expressed in mm.  
The ratio (p0/p)0.5 (where p and p0 are the atmospheric pressures at the measurement level and at 
the surface) represents particle’s terminal velocity correction due to the air density change with 
the altitude 

Additionally, a novel S(KDP, ZDR) polarimetric relation is suggested. It has a form  
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   (9.21) 

where  

1/2

2 dp
m

DP

Z
D

K
 

=  λ 
      (9.22) 

is the mean volume diameter of snowflakes. In (9.21) – (9.22), 0.1 ( )10 DRZ dB
drZ =  and Zdp = Zh – 

Zv. 
As opposed to the S(KDP, Z) relation, the S(KDP, ZDR) estimate is almost invariant to the 

variations of the particles’ aspect ratio and the width of the canting angle distribution but is 
sensitive to some extent to the change in the particle's density (riming). It is also prone to the 
measurement errors of ZDR including those caused by its miscalibration.  Both polarimetric 
relations do not work well for very low values of KDP and ZDR which are quite typical for heavily 
aggregated dry snow near the surface. Therefore, it might be necessary to project the estimates of 
snow rate made aloft (where KDP and ZDR are usually higher) to the surface which may invoke 
cloud modeling considerations. 

The performance of the S(KDP,Z) and S(KDP,ZDR) relation has been evaluated for number of 
snowstorms. Herein, we present three examples. One of them is the 23 January 2016 East Coast 
blizzard which produced almost 50 mm of snow water equivalent (SWE) accumulation (Fig. 
9.2.1. Instantaneous snowfall rates from the (KDP, Z), S(KDP, Zdp), and S(Z) estimates and the 
reference gauge are presented in Fig. 9.2.1a whereas their accumulations are in Fig. 9.2.1b. The 
radar estimates are obtained at the 1.45° Plan Position Indicator (PPI) elevation, which is about 
2.3 km above the ground level (~74 km east-northeast from the Sterling, Virginia WSR-88D 
radar). The radar snowfall rate estimates and accumulations are obtained from the rectangular 
area (~10 by 10 km, ~320 data points) averages, centered above the ground ASOS station (BWI) 
used for verification. The times of the measurements aloft are adjusted for the average terminal 
velocity of snowflakes, ~ 1 m s-1, to match the gauge measurements (about 35 minutes offset).  

During the periods of light snow, from 0000 to 0400 UTC and 1400 to 1800 UTC, S(Z) 
estimate is slightly better than the ones from S(KDP, Z) and S(KDP, Zdp), and it is opposite within 
the moderate to high (>2.5 mm h-1) snowfall rates (Fig. 9.2.1a). The S(KDP, Z) relation (with σ ≈ 
11° and b/a = 0.6) reproduces the snowfall rate peaks (4.5-5.5 mm h-1) very well, almost 
matching the gauge measurements (4.5-5 mm-1). But in few other periods (e.g. 0630 UTC), it 
overestimates S up to 2 mm h-1. The S(KDP, Zdp) peaks are slightly smaller but comparable with 
the gauge’s. In contrast, the S(Z) estimate does not show the peaks of SWE over 3.1 mm h-1 
during the entire storm. 

The accumulations from S(KDP, Z) (red line, Fig. 9.2.1b) are very close to the gauge 
measurements (~46.5 mm, red line). The S(KDP, Zdp) estimate is not far behind (~42 mm, green 
line), but S(Z) is significantly smaller (~29.5 mm). The estimates from 0.5° radar elevation (not  
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Fig. 9.2.1 (a) Snowfall rate (mm h-1) estimates from ASOS gauge (dashed line), S(KDP, Z) (red 
line), S(KDP, ZDR) (green line), and S(Z) (blue line), and (b) their respective accumulations; 
KLWX WSR-88D radar, VA, 23 January 2016.  

shown, ~1.04 km AGL) display similar tendencies; S(KDP, Z) peaks somewhat higher (7.8 mm at 
0630 UTC, σ ≈ 18.5°) but the estimate is close to the ground reference (48 mm vs. 46.5 mm). In 
contrast, total accumulation from S(KDP, Zdp) estimate is somewhat lower (~38.5 mm) whereas 
S(Z) is bit higher (~32.5 mm) with respect to their 1.45° counterparts. This is expected because 
the impact of aggregation on S(Z) is strongest at the lowest elevations. In opposite, S(KDP, Zdp) 
works the best at the temperature range from -10°C to -20°C within the dendritic growth layer. 
Temperatures (obtained from Rapid Refresh – RAP model, not shown) varied from -8°C to -2°C 
at the level of radar measurements, with the warmest period from 0300 to 1100 UTC (-2°C to -
4°C) which  not optimal for S(KDP, Zdp) estimates.  

Figs. 9.2.2 and 9.2.3 illustrate the performance of a traditional and polarimetric algorithms 
for snow QPE for the February 1, 2011 winter storm in central Oklahoma and for the January 28, 
2013 case in Grand Mesa, Colorado. In all three cases, the polarimetric method shows 
improvement, particularly at the times of high snowfall rate. It is important to emphasize  that the 
polarimetric relations provide more realistic vertical profiles of snow rates than the S(Z) relation 
as Fig. 9.2.4 shows where a vertical structure of Z, KDP, ZDR, and snow rate S is displayed for the 
Oklahoma snowstorm. Indeed, bulk of snow is generated within the dendritic growth layer 
(DGL) within a temperature interval between -10 and -20°C. Snow aggregation below DGL does 
not change the snow flux which is reflected in the vertical profiles of S retrieved from 
polarimetric measurements whereas rapid decrease of S(Z) with height below DGL is apparently 
false.  
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Fig. 9.2.2. Same as in Fig. 9.2.1 but for the snow case in Oklahoma 

 

Fig. 9.2.3. Same as in Fig. 9.2.1 but for the snow case in Colorado. 

9.2.2. Polarimetric Vertical Profile of Reflectivity (PVPR) technique 

Bright band (BB) contamination and radar beam overshooting of rain at longer distances 
from the radar cause large biases in rainfall estimation over large areas of radar coverage. 
Existing correction methods called “vertical profiles of reflectivity” (VPR) are based on the 
climatology of vertical profiles of Z in stratiform rain and are not very efficient. The use of 
polarimetry may offer possible improvement because the areas of BB contamination are very 
well delineated in the fields of polarimetric variables such as ZDR and ρhv. An example of PPIs of 
Z and ρhv at elevations 0.5 and 1.45° measured by the KICT WSR-88D radar during a low-
bright-band stratiform rain event on December 19, 2011 is shown in Fig. 9.2.5. The areas of BB 
contaminations are very well depicted by the reduction of ρhv at both antenna tilts. Note that  
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Fig. 9.2.4. QVPs of Z, KDP, and ZDR (panels a, b, and c) and vertical profiles of snow 
accumulations estimated from the S(Z), S(KDP,Z), and S(KDP,ZDR) relations for the snowstorm in 
Oklahoma on February 1, 2011. 

some enhancement of Z is produced by embedded convection in this case and its contribution 
has to be separated from the artificial enhancement caused by the bright band contamination. 

The suggested methodology called “polarimetric VPR” or PVPR is based on the correlation 
of the vertical profiles of Z and ρhv within the melting layer which is best quantified using 
“quasi-vertical profiles” (QVP) technique. Establishing statistical correlations between intrinsic 
vertical profiles of Z and ρhv through the melting layer using QVP methodology is a starting 
point of PVPR. Then a multitude of model intrinsic vertical profiles of Z and ρhv in the ML is 
created and a pair of radial profiles of Z bias and ρhv is generated and stored in lookup tables for 
every pair of intrinsic profiles by taking into account beam broadening. An example of intrinsic 
(or “true”) vertical model profiles of Z and ρhv is presented in Fig. 9.2.6 and the corresponding 
radial model profiles by BB-related bias of Z (ΔZ) and ρhv are shown in Fig. 9.2.7 for two pairs 
of the intrinsic vertical profiles of Z and ρhv. One of the pairs corresponds to stronger ML with 
higher ΔZ and lower ρhv in Fig. 9.2.7 (curves marked by 1) whereas another pair produces lower 
ΔZ and shallower ρhv signature in the model radial profile of ρhv (marked by 2). Because the  
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Fig. 9.2.5. PPIs of Z and ρhv at elevations 0.5° and 1.45° measured by the KICT WSR-88D radar 
on December 19, 2011. 

 

Fig. 9.2.6. Example of intrinsic vertical model profiles of Z and ρhv through the ML. 
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Fig. 9.2.7 Simulated radial profiles of Z bias and ρhv at El = 1.45° for the ML with its bottom at 
the height of 1.4 km for two different values of intrinsic minimal ρhv within the ML (as depicted 
in Fig. 9.2.6). 

vertical and radial profiles of Z (or ΔZ) are correlated, one can predict stronger enhancement of 
Z within BB for lower ρhv. In other words, it is possible to quantify the BB-related Z bias using 
radial profile of ρhv. The whole idea of PVPR is to examine a measured radial profile of ρhv at a 
given elevation and find its best match in the family of model radial profiles stored in the lookup 
tables. The corresponding radial profile of ΔZ has to be subtracted from the measured radial 
profile of Z.  

In order to match the model and measured radial profiles of ρhv, two parameters are estimated 
(1) the distance where ρhv starts dropping due to BB contamination and (2) the “strength” of the 
ML which is an integral parameter defined by Eq (7.1) that can be reliably estimated even from 
the noisy ρhv (see Fig. 7.2.4). From the first one, a height of the “true” bottom of the ML (not 
affected by beam broadening) is determined. Azimuthal profiles of the distances to the ML 
bottom along the beam at elevation 1.45° and the corresponding height of the bottom of the ML 
are displayed in Fig. 7.2.6. 
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The result of the PVPR correction of Z at elevation 1.45° is presented in the left bottom panel 
of Fig. 9.2.8. The biases of Z related to BB contamination are substantially reduced. This is also 
confirmed by the consistency of the corrected Z field at the elevation 1.45° (left bottom panel) 
and observed Z field at elevation 0.5° in area of BB contamination at higher tilt (right bottom 
panel). The result of the correction of a radial profile of Z at El = 1.45° is shown in Fig. 9.2.9. 
Uncorrected profile of Z exhibits an artificial bump which is eliminated by PVPR and the 
corrected profile of Z at higher elevation becomes very similar to the one at lower elevation. 

 
Fig. 9.2.8. PPIs of (left top panel) Z at El = 1.45º before correction, (right top panel) ρhv at El 
=1.45º, (left bottom panel) Z at El = 1.45º after correction, and (right bottom panel) Z at El = 0.5º 
for the case on December 19, 2011. 

Another challenging case of low bright band is taken from the Western US where the beam 
blockage at lower elevations is ubiquitous (see Fig. 9.2.10). The radar beams at elevations 
0.5°and 0.9° are obviously blocked in wide sectors whereas higher tilt at elevation 1.3° is not 
blocked but is more affected by the BB contamination. Again, we were able to retrieve azimuthal  
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Fig. 9.2.9. Radial profiles of Z at El = 1.45º before and after PVPR correction, Z at El = 0.5º, and 
ρhv at El = 1.45º.

 

Fig. 9.2.10. PPIs of Z and ρhv at antenna elevations 0.5, 0.9, and 1.3º obtained from the 
measurements by the KRLX WSR-88D radar on February 18, 2019. 
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profiles of the ML height and strength using the PVPR methodology (Fig. 9.2.11) and eliminate 
BB contamination at elevation 1.3° (Fig. 9.2.12). Indeed, no arc-shaped artificial enhancement of 
Z is visible anymore (right bottom panel of Fig. 9.2.12).  

 

9.2.11. Azimuthal dependencies of the radial distance to the ML bottom, ML bottom height, and 
“strength” of the ML retrieved from the data collected at El = 1.3º for the case on February 18, 
2019. 

In summary, the following conclusions can be drawn regarding PVPR 

(1) The suggested PVPR technique shows good promise in two challenging situations: (a) 
BB enhancement of Z is mixed with the increase of Z due to embedded convection and 
(b) Z at lower tilts is biased by partial beam blockage. 

(2) The current version of PVPR takes into account azimuthal and range heterogeneity of the 
rain field and melting layer. 

(3) As a byproduct, the PVPR technique allows to estimate “true” heights of the bottom and 
top of the melting layer which are not affected by beam broadening although radial 
resolution of such designation degrades with the distance from the radar. 

(4) The PVPR methodology makes a good use of higher antenna elevations for QAPE I 
situations when the data at lowest elevation are of poor quality due to ground clutter 
contamination or beam blockage. 
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Fig. 9.2.12. PPI of Z at El = 0.5 and 0.9º (top panels) and Z at El = 1.3º before and after PVPR 
correction (bottom panels) for the case on February 18, 2019. 
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